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We describe here a procedure which allows to extend the application of the 
quantitative orbital interaction analysis at the ab initio SCF-MO level to any 
kind of orbital interaction. In this new procedure a localization scheme is 
applied to the fragment MOs obtained with the procedure suggested by Wolfe 
et al. (JACS 99, 1296 (1977)): in this way also the resulting o--type fragment 
localized MOs have correct orbital occupancies and can be used for a PMO 
analysis. In addition the availability of quantitative expressions for the frag- 
ment localized MOs allows also to compute the total energy of the system in 
the absence of the orbital interactions under examination. For illustrative 
purposes the procedure is applied to the analysis of the factors which deter- 
mine the preferential stability of trans over cis diimide. 
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I. Introduction 

Procedures based on the analyses of the energy effects associated with the orbital 
interactions occurring between the component  fragments seem to be very useful 
for analyzing structural problems [1]. These procedures usually involve the 
following steps: (i) sequential dissection of the molecule under consideration into 
component  fragments; (ii) construction of the group MOs of each fragment; (iii) 
evaluation of the interaction energy obtained in the course of combining the 
component  fragments to yield the composite system in a specified geometry. 

On the other hand ab initio SCF-MO theory with a clearly defined set of basis 
functions associated with each atom seems to provide a complete model for 
molecular structure [2]. Therefore  procedures which perform orbital interaction 
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analyses at the ab initio SCF-MO level should be very useful for elucidating 
structural problems. Preliminary results, in fact, obtained with procedures of this 
type recently suggested [3, 4] seem to be very promising. However the appli- 
cability of the procedures suggested so far is limited to problems involving only 
or-type MOs. 

It is the purpose of this paper to describe a general procedure which allows to 
evaluate in the framework of an ab initio SCF-MO computation, the energy 
effects associated with the orbital interactions occurring between any type of 
fragment MOs. This procedure can therefore be applied not only to the analysis of 
the orbital interactions between ~r MOs, as performed by the procedure suggested 
by Wolfe et al. [3], but also to the analysis of orbital interactions involving o" bond 
MOs and o--type lone pairs. Furthermore the energy effects associated with the 
orbital interactions are estimated with two different treatments, one based on a 
Perturbational Molecular Orbital approach (PMO approach) and the other based 
on SCF-MO total energy values computed in the absence of the interactions under 
examination (total energy approach). It is suggested that the combined use of 
these two types of quantitative information provides a better understanding of the 
role played by the various factors which control a structural problem. 

For illustrative purposes we describe here the application of such a computational 
procedure to the analysis of the factors which determine the relative stability of 
the cis and trans isomers of the N2H2 molecule. 

2. Computational Procedure 

The present computational procedure involves the following steps. 

2.1. Computation of  the Fragment  M O s  

The procedure used here for obtaining the eigenvectors of the fragment MOs is 
derived from that recently suggested by Wolfe et al. [3], which will be denoted 
hereafter as the WSW procedure. In the WSW procedure the energies and the 
eigenvectors of the fragment MOs are obtained from the solution of the following 
eigenvalue problem 

FO c o = sO cO e o (1) 

where F ~ and sO are the Fock matrix and the overlap matrix for the composite 
system with all the non-diagonal matrix elements between atomic orbitals 
belonging to the different interacting fragments set equal to zero. The availability 
of quantitative expressions for the fragment MOs allows also to obtain estimates 
of the matrix elements and overlap integrals between the interacting MOs over 
the fragment molecular basis. The energy effects associated with the orbital 
interactions are then estimated in terms of the following second order pertur- 
bation equations: 

2 2 AEIj = 2(H# - eiSlj) ~(el - ei) (2) 
4 

AEii = 4Sij(Sijeo - Hi j)/(1 - Si]) (3) 
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where AE 2 denotes the stabilization energy arising from the interaction of a 
doubly occupied MO, ~bi, with a vacant MO, 4~j, while 2~E~ denotes the destabil- 
ization energy arising from the interaction of two doubly occupied MOs, ~b~ and ~bj. 
The symbols ei and e~. denote the orbital energies of ~bi and &i, respectively, e0 the 
mean of these energies,/-/~j the interaction matrix element and S;j the overlap 
integral. 

As already pointed out by Wolfe et al. [5], this procedure provides useful 
information only for the analysis of the energy effects associated with ~-MOs, but 
can not be used for a quantitative analysis of the effects of o" orbital interactions. In 
fact, the correct application of Eqs. (2) and (3) requires that the interacting 
orbitals have correct orbital occupancies, while the orbital occupancies of the 
formally doubly occupied o" MOs obtained with the WSW procedure differ 
significantly from tl~e value of 2. 

Wolfe et al. [6] have recently suggested a modification to their procedure for 
analyzing the interactions associated with the fragment orbitals which contribute 
to the HOMO of the composite molecule, when the HOMO contains a significant 
contribution from a hybrid lone pair orbital, as in the case of amines and their 
congeners. 

Here we suggest a more general procedure which completes the WSW quan- 
titative analysis and allows to extend its application to all kinds of orbital 
interactions. Our suggestion consists in applying a localization procedure to the 
set of fragment MOs obtained from the solution of the eigenvalue problem (1). 
The localization procedure is applied separately to the set of the occupied and to 
the set of the vacant fragment MOs. In our applications we have used the Boys' 
method of localization [7]. This new procedure, i.e. the WSW procedure followed 
by localization, provides for each fragment a new set of MOs which are still 
orthogonal and have now correct orbital occupancies. We shall denote this new set 
of MOs as fragment localized MOs. 

We have applied this procedure to the two stable isomers of diimide, using the 
dissection illustrated in Scheme 1. 

Scheme 1 
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We have applied the localization treatment only to the or fragment MOs. 



248 F. Bernardi and A. Bottoni 

The orbital occupancies of the various MOs associated with an HN-fragment 
computed with the WSW procedure and with the present procedure are shown in 
Table 1. It can be seen that, while none of the occupied tr fragment MOs obtained 
with the WSW procedure has an electron occupancy close to 1 or 2, the occupied 
MOs obtained after the application of the localization procedure have electron 
occupancies close to 2, except one whose electron occupancy is close to 1. Fig. 1 
illustrates the valence localized MOs of an HN-fragment. The first MO (trN) is the 
singly occupied orbital localized along the N- -N axis and pointing toward the 
other nitrogen atom, the second MO (~rNH) is a doubly occupied o" MO associated 
with the N- -H bond, the third MO (n~) is a doubly occupied in plane nitrogen lone 
pair, the fourth MO (or) is a singly occupied p~-type nitrogen atomic orbital and 
the fifth MO (~r*H) is a vacant orbital associated with the N- -H bond. 

2.2. PMO Approach 

Following the procedure outlined by Wolfe et al. [3], the availability of quan- 
titative expressions for the fragment localized MOs allows to obtain estimates, in 
the framework of the SCF computations, of the matrix elements and overlap 
integrals between the fragment localized MOs according to the following 

Table 1. Energies a (el) and gross populations (Qi) of the fragment orbitals of cis and trans diimide 
computed with the WSW procedure and with the present procedure 

MOs cis trans 

Rigid model t' 

/~i Q i  

Optimized model c Rigid model d Optimized model c 

ei Ol el Oi ei Oi 

WSW procedure 

0-1 -15.4215 2.0008 -15.4187 2.0008 -15.4038 2.0085 -15.4096 2.0008 
0" 2 -1 .1669 1.6164 -1.1560 1.6094 -1.1401 1.6012 -1.1512 1,6063 
0-3 --0.5857 1.5969 --0.5985 1.5758 --0.5969 1.5821 --0.5869 1.6192 
0" 4 -0.4409 1.7739 -0.4285 1.7957 -0.4214 1.7995 -0.4315 1.7597 
~" -0.1734 1.0000 -0.1707 1.0000 -0.1626 1.0000 -0.1669 1.0000 
0-s 0.5684 0.0120 0.5674 0.0184 0.5822 0.0163 0.5847 0.0140 

Present procedure 

lsN -15.3004 2.0005 -15.2979 2.0004 -15.2833 2.0004 -15.2889 2.0005 
0-n -0.9483 1.0108 -0.9505 1.0035 -0.9414 1.0006 -0.9427 1.0114 
0-NH --0.7912 2.0101 --0.7825 2.0050 --0.7664 1.9990 --0.7730 2.0044 
no- --0.5751 1.9667 --0.5708 1.9727 --0.5711 1.9837 --0.5745 1.9697 
~- -0 .1734 1.0000 -0.1707 1.0000 -0.1626 1.0000 -0.1669 1.0000 
o'*H 0.5684 0.0120 0.5674 0.0184 0.5822 0.0163 0.5847 0.0140 

a Values in a.u. 
b Geometry obtained with rigid rotation of the trans geometry. 
c Optimized geometries. See Ref. [2]. 
d Geometry obtained with rigid rotation of the cis geometry. 
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relations: 

IC~ ~*FC ~ H=~ LJ L (4)  

C O t r 0 s = (  ~ ) s c L  (5) 

where C ~ denotes the coefficient matrix of the fragment  localized MOs, F the 
Fock matrix and S'  the overlap matrix for the composite system between atomic 
orbitals. Fur thermore,  as energies of the fragment  localized MOs, we have chosen 
the expectation values of the Fock operator  over  the fragment  localized basis, i.e. 
the diagonal elements of H. 
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Insertion of the values of the matrix elements, overlap integrals and energies of 
the fragment localized MOs, computed as described above, in the expressions (2) 
and (3), makes possible to obtain estimates of the various two-electron stabiliza- 
tion energies AE 2. and four-electron destabilization energies AE 4. 

These energy terms are the only ones appearing in the expression of the inter- 
action energy when the PMO treatment is carried out at the Extended Hiickel 
level of MO theory [8]. However, when we operate within the framework of a 
SCF-MO scheme, other terms appear in the expression of the interaction energy 
[9, 10], and among these of particular relevance should be the Coulomb Energy 
(Ec) associated with the interaction of the various fragments. 

In the Devaquet expression [9] the term Ec represents the Coulomb interaction 
between the net charges of the tWO interacting molecules (electrostatic energy). 

Usually, in these approaches, the energy effects associated with the orbital 
interactions are estimated in terms of Eqs. (2) and (3), which describe just the 
energy effects associated with the two-orbital mixing. However, also higher order 
mixing can be significant: in order to evaluate its effect, we can compare the 
solution of the Hfickel type variational problem involving all the orbitals under 
examination with the solutions obtained in terms of the related 2 x 2 variational 
problems. In fact, Eq. (3) is just the solution of a 2 x 2 variational problem of this 
type involving two doubly occupied MOs [11], while Eq. (2) is an approximate 
expression of the solution of a 2 x 2 variational problem involving a doubly 
occupied and a vacant MO [11]. 

2.3. Total Energy Approach 

The availability of quantitative expressions for the fragment localized MOs allows 
also to compute the total energy of the system in the absence of the orbital 
interactions under examination on the basis of the following expression: 

E ~ = tr [(h o + HO)RO]. (6) 

Here all the matrices are defined over the fragment localized basis. The density 
matrix R ~ is defined as R ~ = TT*, where T is the matrix formed with the doubly 
occupied MOs referring to the situation in the absence of the interactions under 
examination, h ~ is the matrix of the one-electron hamiltonian and H ~ is the Fock 
matrix computed from R ~ with all non diagonal matrix elements between 
fragment localized MOs belonging to the different interacting fragments set equal 
to zero. 

This approach is a generalization of that described in Ref. 4, which was developed 
only for ~" type MOs. Also, the present approach is similar, in principle, to that 
suggested by Kitaura and Morokuma [12]. 

The E ~ values provide useful information about the effect of the orbital inter- 
actions under examinations. In particular they can be used to show the changes of 
geometrical parameters in the absence of a certain orbital interaction. The 

�9 0 difference ET --ET, where ET denotes the total energy of the system, represents 
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an estimate of the electronic energy component of the energy effect associated 
with a given interaction. The exact relationship of this quantity with the cor- 
responding quantity computed in terms of the quantitative PMO analysis is not yet 
clear. However, the E T -  E ~ values provide additional information which used 
together with that obtained in the PMO treatment leads to a better understanding 
of the effects of the various factors that concur to determine the preferred 
structure of a molecule. 

3. Fragment Interaction Analysis in cis and trans Diimide 

For illustrative purpose we apply the procedure previously described to the 
analysis of the factors which determine the preferential stability of trans versus cis 

diimide. All computations have been carried out at the STO-3G level [13], and 
the SCF values have been computed with the GAUSSIAN 70 series of programs 
[14]. The computations have been performed at four different geometries, i.e. at 
the trans STO-3G optimized geometry [2], at a cis geometry obtained through a 
rigid rotation of the trans geometry, at a cis STO-3G optimized geometry [2] and 
at a trans geometry obtained through a rigid rotation of the cis optimized 
geometry: the trans configuration with optimized geometry has been found to be 
more stable by 2.84 kcal/mol, than the trans configuration obtained through rigid 
rotation, more stable by 10.17 kcal/mol than the cis configuration obtained 
through rigid rotation and more stable by 7.35 kcal/mol than the cis configuration 
with optimized geometry. 

In this analysis we dissect the diimide molecule into two HN-ffagments as shown 
in Scheme 1 and we examine the energy effects associated with the non-bonded 
interactions occurring between these two fragments. These interactions are 
depicted in Fig. 2, while the results of the quantitative analysis are listed in Table 2 
and 3. 

We compare first the trans configuration with the cis at the geometry obtained 
through rigid rotation. The following points are of interest: (i) The overall energy 
effect associated with the non-bonded interactions (EAE) is destabilizing and 
more destabilizing in the cis than in the trans geometry. The difference between 
the two destabilizing effects (12.31 kcal/mol) is of the same order of magnitude as 
the difference between the corresponding total energies and therefore, at this 
level, non-bonded interactions provide a satisfactory rationalization of the pref- 
erential stability of trans over cis diimide. (ii) The results of the quantitative 
analysis suggest that the dominant factor is the destabilizing interaction between 
the two trNH bond MOs: this interaction is, in fact, much more destabilizing in the 
cis than in the trans geometry, and the relative destabilization is much larger than 
that associated with the destabilizing interaction between the two o" lone pairs, 
which favors the cis geometry. The relative effect of the third destabilizing 
interaction, O'NH--n', is small and favors the trans geometry. Also the energy 
effect associated with the stabilizing interactions is small: in particular that 
associated with the *' 0rNH--trNH interaction is almost negligible, while that asso- 

*p 
ciated with the n~--trNH interaction is more significant and favors the cis 
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Fig. 2. Non-bonded orbital interactions 
occurring between two HN-fragments 

geometry as previously suggested [1, 15]. However its effect is not large enough to 
change the trend dictated by the O'NH--O'~H interaction. 

In Table 2 we have reported also the values of the electrostatic energies (Eel) 

associated with the interaction between the two HN-fragments, computed in 

Table 2. Total energies a with (ET) and without (E ~ non-bonded interactions 
computed at the STO-3G level for cis and trans diimide, together with the elec- 
trostatic energy a (Ee3 between the two HN-fragments 

cis trans 

Rigid model Optimized model Rigid model Optimized model 

ET --108.54074 --108.54524 -108.55243 -108.55695 

E~ -108.65701 -108,64032 -108.65350 -108.69873 

E~I 0.00270 0.00261 0.00154 0.00103 

a Values in a.u. 
b Er = y.,<,, qClr'/Rrr', where qr denotes the net atomic charge on atom r and Rrr' the 
distance between atoms r and r'. 
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Table 3. Two-electron stabilization (AE~) and four-electron destabilization (&E~/) energies ~ asso- 
ciated with the non-bonded interactions in cis and trans diimide (see Fig. 2) 

c~ ~ans 

Rigid model Optimized model Rigid model Optimized model 

AE4NH.~H 31.95 18.39 7.10 5.71 

~ E 4 ~  0.44 2.78 14.56 14.75 

~E4NH,~- 10.30 10.59 8.78 8.75 

A E 2 N , , ~  -0 .45  -0 .30  - 1.62 - 1.41 

A E ~ , ~  -2 .71  -3 .75  -0 .46  -0 .39  

.~,AE 'b 46.67 34.25 35.06 34.36 

~o~ nlei o -34.2815 -34.2529 -34 .1830 -34.2155 

a Values in kcal/mol. 
b EAE = AE~ . . . .  ~H + AE4~,,~ - + 2AE4 . . . .  ~ + 2AE~ . . . .  ~h + 2AE~,~:~.  
c Sum of the energies of the localized MOs of a HN-fragment (Values in a.u.). 

terms of the atomic charges of the composite molecule obtained with the Mulliken 
analysis. The electrostatic energy computed in this way has just an indicative 
value. In the present case also this term favors the trans geometry, however its 
relative effect is small ( -1  kcal/mol). 

We have also estimated the importance of the energy effects associated with 
higher order mixings and found that they are negligible. 

We proceed now to compare the results previously discussed with those obtained 
for the cis optimized geometry. The comparison shows that in the cis configura- 
tion the geometry tends to change in order to reduce the large destabilizing effect 
associated with the O'NH-- (rNH' interaction and to increase the stabilizing effect 
associated with the n ~ -  o'Nn interaction. This result is obtained mainly through 
an increase of the HNN angle [2] (from 105.3 ~ to 111.5 ~ and of the N--H bond 
length [2] (from 1.061/~ to 1.064/~). For the cis optimized geometry the overall 
energy effect is much less destabilizing than for the cis geometry obtained with 
rigid rotation of the trans geometry and becomes of the same order of magnitude 
as that obtained for the trans geometry. However this reduction of the destabiliz- 
ing effect has been obtained at the expenses of a destabilization of the various 
fragment localized MOs, as suggested by the increase of the corresponding orbital 
energies which accompanies the geometry relaxation in the cis configuration (see 

o C C  

the values of the term Yq nie~ in Table 3, where ei are the energies of the various 
localized MOs and n~ their formal occupation numbers). Therefore, the varia- 
tional optimization of the cis geometry causes a significant modification of the 
various energy effects, even if the final gain in total energy is quite small 
(-2.8 kcal/mol). 

This interpretation is also supported by the total energy values computed in the 
absence of the non-bonded interactions listed in Table 2. It can be seen that in the 
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absence of the non-bonded interactions, the total energy value computed at cis 
geometry obtained with rigid rotation of the trans geometry is lower than that 
computed at cis optimized geometry. This trend is clearly indicative of a destabil- 
ization of the various fragment localized MOs in the optimized geometry. 

We examine now the comparison in the opposite direction, i.e. we compare first 
the cis optimized configuration with the trans geometry obtained with rigid 
rotation of the cis geometry and then this trans with the trans at optimized 
geometry. The comparison shows that the overall energy effect is almost of the 
same order of magnitude in the three geometries under comparison. Therefore, in 
this case, even the trend in the rigid model does not agree well with the total 
energy behaviour. The comparison of the values of the term Z ~ niei shows also 
that in the trans configuration the geometry relaxation is accompanied by a 
stabilization of the various fragment localized MOs. 

The present results show clearly the limitations of a quantitative PMO analysis 
based only on Eqs. (2) and (3). The discrepancies with the total energy behaviour 
are certainly due to the fact that a PMO approach of the type used here implies 
that the intrafragment matrix elements are not varied in the geometries under 
examination [16]. Therefore, the PMO results agree better with the total energy 
behaviour only when the latter condition is satisfied. 

We have suggested here to improve the analysis using also the information 
provided by the term 3~ ~176 niei: the trend of this term should, in principle, provide 
information about the trend of the first order effects. However, the present results 
show that this term provides useful indications only when we compare two very 
similar geometries, such as the two cis or the two trans, but not the cis and the 
trans. 

Therefore the quantitative PMO analysis presented here must be used with 
caution, since it does not seem to be able to rationalize quantitatively the ab initio 
SCF-MO results in all cases. Nevertheless, this type of analysis is certainly a useful 
instrument for a better understanding of structural problems, since it provides 
information about the various factors which determine the molecular structure. 

The present results suggest that the best procedure is that where the starting point 
is the less crowded optimized geometry. Using this procedure, the rationalization 
of the preferential stability of the trans over the cis configuration of diimide 
depends on the model used. In a rigid model, where the cis geometry has been 
obtained through a rotation of the trans optimized geometry, the trans-cis energy 
difference is caused by second order energy effects associated with the non- 
bonded interactions. However, in an optimized model, the trans-cis energy 
difference is caused by destabilization of the orbital energies of the fragment 
locarized MOs which accompanies the cis geometry relaxation. The two explana- 
tions are equivalent: however, the rationalization based on the rigid model is 
simpler to visualize and therefore seems preferable for a qualitative theory of 
structural problems. 
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